

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

1 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Snooping protocol proposal to Improve Cache Performance via Reducing

Memory Access Time

Rehab Flaih Hasan*1, Maha Abdulkareem1 and Abeer Diaa Al-Nakshabandi2

1Department of Computer Sciences – University of Technology – Baghdad
2Distribution Office at Ministry of Electricity – Baghdad

*surorh@yahoo.com

Received: 2 April 2018 Accepted: 9 May 2019

Abstract

Cache design in multiprocessor systems usually involves maintaining data consistency between

these processors that are achieved through implementation one of most important protocols

used for this purpose which are snooping protocol and directory-based protocol. It also includes

improved memory access time by reducing the time spent in three cases which are: miss rate,

miss penalty and time to hit in the cache. Generally, there exist three critical attributes that have

an impact on the performance of any coherence protocol in the cache which are low-latency

cache-to-cache misses, bandwidths efficiency and scalability challenges. In this research, a new

protocol has been proposed for coherent caches named PMOESI protocol. This protocol has

the same states of a standard MOESI protocol but the difference is in adding a new state named

Premier "P" and also an exclusive reference buffer is designed to be added to Level1 cache.

The MOESI protocol is a version of the snooping coherence protocol which each block in the

cache memory can have one of five (Modified, Owned, Exclusive, Shared, Invalid) states. From

using the proposed protocol, the performance is enhanced as a result of reducing latency time

in comparison with MOESI protocol. The reason behind this improvement is in using low

latency cache to cache transfer to deliver the desired block instead of fetching this block from

main memory for responding to request writing of remote processors.

Keywords: Cache coherence problem, Snooping protocol, Directory-Based cache Protocols,

MOESI, Cache Simulation, Dev. C++, Multiprocessor, Shared memory.

mailto:surorh@yahoo.com

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

2 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

 اقتراح بروتوكول الاستطلاع لتحسين أداء الذاكرة المخبئية عبر تقليل وقت وصول الذاكرة

 2و عبير ضياء النقشبندي 1مها عبد الكريم الراوي، 1رحاب فليح حسن

 1قسم علوم الحاسوب – الجامعة التكنولوجية – بغداد
 بغداد –وزارة الكهرباء –قسم التوزيع 2

 الخلاصة

المعالجات والتي تلك في أنظمة المعالجات المتعددة عادة يتضمن الحفاظ على تطابق البيانات ما بين الذاكرة المخبئيةتصميم

تتحقق من خلال تنفيذ احدى أهم البروتوكولات المستخدمة لهذا الغرض والتي هي بروتوكول الاستطلاع والبروتوكول القائم

ل تقليل الوقت الذي يقضيه في الحالات الثلاث والتي هي: على الدليل. ويشمل أيضا تحسين وقت الوصول للذاكرة من خلا

عند عدم وجود كتلة البيانات في الذاكرة المخبئية، عند جلب كتلة البيانات من اقل مستوى فيها تلك الكتلة مضافا اليها وقت

ا توجد ثلاث من الصفات الحرجة تسليم تلك الكتلة الى المعالج وكذلك في حالة وجود كتلة البيانات في الذاكرة المخبئية. عموم

تقليل الوقت المستغرق مابين اصدار الطلب التي يكون لها تأثير على أداء اي بروتوكول ترابط في الذكرة المخبئية والتي هي

وكفاءة الخط الناقل للبيانات ومدى قابلية استخدام عدد كبير من من قبل احدى الذواكر المخبئية وتلقي الاستجابة من اخرى

في هذا البحث، لقد تم اقتراح بروتوكول جديد وذلك لتحقيق تطابق الذاكرة المخبئية والذي يسمى بروتوكول المعالجات.

PMOESI هذا البروتوكول له نفس حالات البروتوكول القياسي .MOESI ولكن يختلف باضافة حالة جديدة تسمى

Premier "P" بروتوكول ضافته في المستوى الاول من الذاكرة المخبئية. ليتم ا مخزن مرجعي للحالات الحصريةوبتصميم

MOESI هو احد انواع بروتوكول الاستطلاع واسم البروتوكول مشتق من من خمس حالات اللي تمتلكها اي كتلة في

، لقد تم تحسين الذاكرة هذه الحالات هي معدلة، ممتلكة، حصرية، مشتركة، غير صالحة. من استخدام البروتوكول المقترح

 .MOESIالكفاءة كتيجة في تقليل وقت الاستجابة مقارنة مع بروتوكول

ا التحسين هو باستخدام الانتقال مابين الذواكر المخبئية لتسليم الكتلة المطلوبة بدلا عن جلب تلك الكتلة من ذالسبب وراء ه

 دة.ذاكرة الرئيسية عند الاستجابة لطلب الكتابة من المعالجات البعيال

، MOESIبروتوكول الاستطلاع، البروتوكول القائم على الدليل، مشكلة الترابط في الذاكرة المخبئية، : الكلمات المفتاحية

 المشتركة. ، المعالجات المتعددة و الذاكرة++DEV Cاكاة الذاكرة المخبئية، مح

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

3 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Introduction

Using of a multicore system, scientific and technical applications achieved better performance

by scaling the core count [1]. Cache memory plays an important role in the design of these

systems. It is used to access data instead of main memory which reduces the latency of delay

time [2]. In such systems, when installing different caches in different processors in shared

memory architecture, the difficulties will appear when there is a need to maintain consistency

between the cache memories of different processors [16]. So, cache coherency protocol is very

important in such kinds of systems; MSI, MESI, MOSI, MOESI, etc. are the most famous

protocols to solve cache coherency problem [6, 8 and 13].

The Cache coherence problem appears when two different processors can have two different

values for the same location. This problem is solved through coherency the caches such that

any reader of the data item will return the most recently written value of that data item. In a

coherent multiprocessor, the cache benefit, from both migration and replication of shared data

[4]. Migration: moving data to a local cache to reduce both data latency to access shared data

item that allocated remotely and the bandwidth demand on the shared memory. Replicating:

copying the shared data that is being read to reduce both the latency of access and contention

for a read shared data item [10].

Coherence Controller

There are two type of controller within multicore processor chip which are cache controller and

memory controller. These controllers are state machines that include logic for implementing

the coherence protocols and are communicated via queues [19]. The cache controller accepts

loads and store from the core and returns load values to the core figure 1a. The controller

initiates a coherence transaction by issuing coherence request to access the required block when

a miss occurs in the cache. This coherence request is sent across interconnection network to one

or more of coherence controller. The memory controller is a coherence controller at the Last

Level Cache (LLC) figure 1b. A memory controller is similar to a cache controller but it differs

that it has only a network side and it does not perform coherence request (loads or stores) or

receive coherence response [7].

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

4 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Figure 1: Cache and Memory Controller [11]

Protocols for Cache Coherence

There are two hardware-based protocols that achieve coherence between caches in

multiprocessor systems which are snooping protocol and directory-based protocol [1 and 3].

The snooping protocol uses a single shared bus to solve the problem of cache coherence via

broadcasting all requests for data to all processors and processors snoop to see if they have a

copy and respond accordingly [9]. A shared bus is a high-speed link that is needed to transfer

data between processors, caches, I / O interfaces, and memories within a multicore processor

system in a coherent fashion figure 2 [5 and 20]. The ability to scale in directory-based schemes

is better than snooping because it does not depend upon a shared bus for communication [4].

The directory which can be central or distributed keeps the state of all memory block shared

between processors and then the cache controller uses point-to-point messages looking up

directory instead of observing shared broadcast to get memory block state [18] figure 3.

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

5 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Figure 2: Snoopy Protocol [20]

Although the directory-based protocols will likely have to be employed for multi core

architectures of the future, there exist a drawback that appears in a directory which are: storage

overhead, frequent indirections, and are more prone to design bugs [15].

Figure 3: Directory Based Protocols [12 and 20]

Replacing Policies

The direct, fully associative, and set associative are three techniques which can be used in the mapping

process to map the blocks of main memory into cache lines because these lines are fewer than main

memory blocks [16]. In set and fully associative caches there exist various replacement algorithms that

are used because these types of caches have several positions that the block may go, so there are different

probabilities to choose a block that will be replaced [17]. The most used algorithms for replacement are:

first in first out (FIFO) that replace the block that has been in the cache longest, least recently used

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

6 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

(LRU) that replace the block that has not referenced in cache for longest time, least frequently used

(LFU) that replace block which has fewest hits and Random in which one block is selected randomly

and replaced [10].

Measuring Cache Performance

The Average Memory Access Time (AMAT) gives us four metrics for cache optimizations: hit

time, hit rate, miss rate, and miss penalty which expressed as in equation (1) [10, 12, 14, 17]:

AMAT = 𝐿1 ℎ𝑖𝑡 𝑡𝑖𝑚𝑒 ∗ 𝐿1 𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 + (𝐿2 𝐻𝑖𝑡 𝑡𝑖𝑚𝑒 ∗ 𝐿2 𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 + (𝐿3 𝐻𝑖𝑡 𝑡𝑖𝑚𝑒 ∗
𝐿3 𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 + 𝐴𝑐𝑐𝑒𝑠𝑠 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑀𝑎𝑖𝑛 𝑀𝑒𝑚𝑜𝑟𝑦 ∗ 𝐿3 𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒) ∗ 𝐿2 𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒) ∗
𝐿1 𝑀𝑖𝑠𝑠 𝑟𝑎𝑡𝑒 (1)

Where

• Hit -- the data requested by the processor appears in the cache.

• Miss -- the data is not found in the cache.

• Hit time – is how long it takes data to be sent from the cache to the processor. This is usually fast,

on the order of 1-5 clock cycles at Level1, of 10-20 clock cycles at Level2, of 30-40 clock cycles at

Level3, of 50-100 clock cycles at the main memory.

• Miss penalty – is the time required to replace a block in the upper level with the corresponding block

from the lower level, plus the time to deliver this block to the processor.

• Hit ratio – the percentage of time the data is found in the higher cache.

• Miss ratio – is the percentage of misses and equal (100 - hit ratio).

Implementation Steps of Proposed Premier Modified Own Exclusive Shared

Invalid (PMOESI) Protocol

The following sections illustrate main steps that needed to implement a proposed protocol using

DEV C++ language:

1. Preparation Steps

This protocol has been implemented through the simulation process and some parameters

must be preset to follow up the implementation methods accurately as shown in figure 4.

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

7 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Figure 4: Steps Prepared Preset for a Proposed Protocol

2. Binary Representations of Memory Addresses

After defining the preparation parameters, the following functions should be implemented:

a) Binary Conversion Function

All main memory addresses are converted to a binary address.

b) Index, Tag and Offset Conversion Function

The tag, index and offset of address bits should be specified from a binary requested address

depending on a chosen size of the cache and then each one is converted to decimal number via

a binary to decimal conversion function in order to be used in the simulation process.

3. Cache Simulation from Instructions of Randomly Selected Addresses

All addresses of main memory have been simulated to all cache levels figure 5.

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

8 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Figure 5: General Structure of Cache Simulation

4. (LFU + LRU) Replacement Algorithm

In this research LFU algorithm is merged within LRU algorithm. This algorithm is used to

select one line from two lines at a set of L2 in the case of incoming other third line evicted from

L1. The victim line is evicted to place at L3cache by using initially LFU algorithm if frequently

of two line are not an equal and select line that least frequently used and if the frequently of

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

9 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

two line are equal then LRU algorithm is implemented for choosing least recently line to be

evicted. Also, this algorithm is used to select one line from four lines at a set of L3 in the case

of incoming other fifth line evicted from L2 and then victim line is evicted to put at the main

memory.

5. The Transition States of Proposed PMOESI Cache Coherence Protocol

The transition between states of the proposed PMOESI protocol is shown in figure 6.

Figure 6: Buses to Coherent Caches using PMOESI Cache Coherence Protocol

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

10 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Experimental Results

The proposal PMOSEI protocol design depends on low latency cache to cache misses in order

to reduce the miss penalty, to approve this enhancement, several experiments have been applied

for different cases of micro-instructions code, with different assumption concerning the main

memory size, cache block size, and different degree of associative. The different results are

obtained from different experiments, the following subsections present the specific assumptions

for each experiment with a step by step tracing followed by performance evaluation.

1. Comparison between MOESI Protocol & PMOESI Protocol

This experiment compares between MOESI and PMOESI cache coherence protocol as shown

in table 1 by using program of six instructions that two processor request address B1 and

supposes that initially, B1 is not cached. The difference between these two protocols has been

shown in blue when MOESI protocol is implemented and shown in red when the proposed

protocol is implemented. The programs of 6 instructions are:

Table 1: MOESI Cache Coherence protocol Action

Seq Event Initially B1="I" in P1's Cache Initially B1="I" n P2's Cache

1
P1 writes 10 to B1

(write miss)

B1 = 10 (Modified)

B1 = Invalid

2

P1 reads B1

 (read hit)

B1 = 10 (Modified)

B1 is flush to main memory

B1 is flush to cache2

B1 = invalid

3

P2 writes 90 to B1

 (write miss)

B1 = Invalid

B1 = Premier

B1 = 90 (Modified)

B1 is flush to main memory

B1 is flush to cache1

4
P1 writes 20 to B1

 (write miss)

B1 = 20 (Modified)

B1 = Invalid

B1 = Premier

5

P1 reads B1

 (read hit)

B1 = 20 (Modified)

B1 is flush to main memory

B1 is flush to cache2

B1 = Invalid

B1 = Premier

6
P2 writes 30 to B1

 (write hit)

B1 = Invalid

B1 = Premier

B1 = 30 (Modified)

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

11 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

2. Memory Consistency

Two important disciplines are usually implemented that keep the memory consistent which are

a memory consistency model and a cache coherence protocol. Cache coherence is an important,

but incomplete piece of multiprocessor memory consistency. The consistency model is used to

determine the behavior of reads and writes with respect to accesses to other memory locations

while coherence determines the behavior of reads and writes to a single memory location. In

table 2 a sample program has been ordered to complete coherency of 28 instructions using both

direct mapped caches and set associative cache.

Initially, the cache simulation tracing using request addresses of a sample program in table 2

starting from the first address until ending program which shown in table 4 are mapped to direct

mapped caches at all levels after determining the following parameters that are gaining from

binary representation table 3:

Main Memory size = 28𝑏𝑦𝑡𝑒 = 256 𝑏𝑦𝑡𝑒,

Cache Block size = 2𝑖 = 23 = 8 , where i=3 represents offset bits for all levels,

Cache Size = 2𝑗 (j is (index + offset) bits), j = 5 at L1, j = 6 at L2, and j = 7 at L3

Cache Size at L1=25 = 32, Cache Size at L2= 26 = 64, Cache Size at L3= 27 = 128 ,

Number of tag at L1 = 23 = 8 , Number of tag at L2= 4, Number of tag at L3 =2,

Number of cache lines = Cache Size / Cache Block Size =
2𝑗

2𝑖 then

Number of line at L1 =
25

23 = 22 = 4 𝑙𝑖𝑛𝑒 , Number of lines at L2 =
26

23 = 23 = 8 𝑙𝑖𝑛𝑒,

Number of lines at L3 =
27

23 = 24 = 16 𝑙𝑖𝑛𝑒

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

12 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Table 2: Sample Program of 28 instructions

Seq.
Core

Name

Core

request
Value Address Seq.

Core

Name

Core

request
Value Address

1 p1 reads 35 15 p1 writes 10 41

2 p2 writes 100 135 16 p3 writes 69 164

3 p3 writes 80 135 17 p4 reads 100

4 p1 writes 20 35 18 p1 reads 41

5 p4 writes 80 228 19 p2 reads 193

6 p2 reads 164 20 p1 writes 33 135

7 p3 reads 41 21 p3 reads 41

8 p4 writes 30 135 22 p3 writes 8 164

9 p1 reads 135 23 p4 writes 55 100

10 p1 writes 11 52 24 p1 writes 93 135

11 p1 reads 228 25 p4 writes 77 100

12 p3 writes 99 100 26 p2 writes 200 80

13 p2 writes 77 193 27 p3 reads 80

14 p4 reads 193 28 p2 reads 80

 Table 3: Binary Representation of Tag, Index and Offset at Three direct mapped Cache Levels

Seq.

Caches at Level1 Caches at Level2 Caches at Level3

Tag Index Offset Tag Index Offset Tag Index Offset

1 4 0 7 2 0 7 1 0 7

2 4 0 7 2 0 7 1 0 7

3 4 0 7 2 0 7 1 0 7

4 1 0 3 0 4 3 0 4 3

5 7 0 4 3 4 4 1 12 4

6 5 0 4 2 4 4 1 4 4

7 1 1 1 0 5 1 0 5 1

8 4 0 7 2 0 7 0 0 7

9 4 0 7 2 0 7 0 0 7

10 1 2 4 0 6 4 0 6 4

11 7 0 4 3 4 4 1 12 4

12 3 0 4 1 4 4 0 12 4

13 6 0 1 3 0 1 1 8 1

14 6 0 1 3 0 1 1 8 1

15 1 1 1 0 5 1 0 5 1

16 5 0 4 2 4 4 1 4 1

17 3 0 4 1 4 4 0 12 4

18 1 1 1 0 5 1 0 5 1

19 6 0 1 3 0 1 1 8 1

20 4 0 7 2 0 7 1 0 7

21 1 1 1 0 5 1 0 5 1

22 5 0 4 2 4 4 1 4 4

23 3 0 4 1 4 4 0 12 4

24 4 0 7 2 0 7 1 0 7

25 3 0 4 1 4 4 0 12 4

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

13 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

26 2 2 0 1 2 0 0 10 0

27 2 2 0 1 2 0 0 10 0

28 2 2 0 1 2 0 0 10 0

Table 4: Tracing of the Simulation of Direct-Mapped Caches using Table 1

index Level1 Cache

P1 P2 P3 P4

0

1- 135 E 0

P & Flush Opt to P2

I

2- 135 M 100

Invalidate P1

P & Flush to P3

3- 135 M 80

Invalidate P1&P2

P & Flush to P4

I

 5- 228 M 80

4- 35 M 20 6- 164 E 0 12- 100 M 99 8- 135 M 30

Inv.P3 L1 &P2 L2

 O 30

9- 135 S 30

P1&P4 in L1

13- 193 M 77

19- 193 O 77

P2 in L1+P4 in L2

16- 164 M 69

Invalidate P2inL2

22- 164 M 8

14- 193 S 77

P2&P4 in L1

11- 228 S 80

P1 in L1+P4in L2

 17- 100 S 99

P4 in L1+P3 in L2

23- 100 M 55

25- 100 M 77

20- 135 M 33

24- 135 M 93

1

15- 41 M 10

Invalidate P3

18– 41 M 10

 O 10

 7- 41 E 0

 I

21– 41 S 10

P1&P3 in L1

2

10- 52 M 11 26- 80 M 200

 O 200

28- 80 O 200

27- 80 S 200

P2&P3 in L1

index

Level2 Cache

P1 P2 P3 P4

0

Evict result – 4

1- 135 I

Evict result – 6

2- 135 P

 I

Evict result – 12

3- 135 I

Evict result – 14

8- 135 O 30

Evict result – 11

9- 135 S 30

 Evict result – 17

14- 193 S 77

4

Evict result – 9

4- 35 M 20

Evict result – 13

6- 164 E 0

 P

Evict result – 16

12- 100 M 99

 S 99

 I

Evict result – 8

5- 228 M 80

 O 80

Evict result – 20

11- 228 S 80

index Level3 shared Cache

0

Evict result – 17

8- 135 O 30

4 Evict result – 20

4- 35 M 20

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

14 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

The evictions steps that occur through cache simulation of a direct mapping are:

- In step 4 evict line 128 to 135 from L1 to L2 in reaching line 32 to 39

- In step 6 evict line 128 to 135 from L1 to L2 in reaching line 160 to 167

- In step 8 evict line 224 to 231 from L1 to L2 in reaching line 128 to 135

- In step 9 move line 128 to 135 from L2 to L1 and as a result evict line 32 to 39 from L1 to

L2

- In step 11 evict line 128 to 135 from L1 to L2 in reaching line 224 to 231

- In step 12 evict line 128 to 135 from L1 to L2 in reaching line 96 to 103

- In step 13 evict line 160 to 167 from L1 to L2 in reaching line 192 to 199

- In step 14 evict line 128 to 135 from L1 to L2 in reaching line 192 to 199

- In step 16 evict line 96 to 103 from L1 to L2 in reaching line 160 to 167

- In step 17 evict line 192 to 199 from L1 to L2 in reaching line 96 to 103 and evict line 128

to 135 from L2 to L3.

- In step 20 move line 128 to 135 from L2 to L1 and remove this line from L2 of P1 and also

remove this line from L3 and then as a result of movement process the line 224 to 231 evict

from L1 to L2 and the line 32 to 39 evict from L2 to L3.

The cache simulation tracing using table 2 that are mapped to two-way set associative caches

at all levels are done in the same manner of table 4 after determining the following parameters:

The main memory size, the block size, and the cache sizes are the same as in table 4 but the

different is in using two lines in each set instead of one line. So, the number of tags is different

as follow:

Number of tag at L1 = 24 = 16, Number of tag at L2 = 8, Number of tag at L3 = 4,

Sets at L1 = Lines / number of way =
22

21
= 2, Sets at L2=

23

21
= 22 = 4, Sets at L3= 24/21 =

23=8

The cache simulation tracing using table 2 that are mapped to direct mapped caches at L1 and

two-way associative caches at L2 and four-way associative caches at L3 are done in the same

manner of table 4 after determining the following parameters using 4096 of main memory

addresses instead of 256 addresses:

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

15 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Cache Block size at all levels = 23 = 8 , Cache Size at L1 = 26 = 64 ,

Number of tag at L1 = 26 = 64 , Number of line at L1 =
26

23 = 23 = 8 𝑙𝑖𝑛𝑒 ,

Cache Size at L2 = 28 = 256 , Number of tag at L2 = 25 = 32,

 Number of lines at L2 =
28

23 = 25 = 32 𝑙𝑖𝑛𝑒, Sets at L2 = 25 / 21 = 24

Cache Size at L3 = 210 = 1024 , Number of tag at L3 = 24 = 16,

 Number of lines at L3 =
210

23 = 27 = 128 𝑙𝑖𝑛𝑒, Sets at L3 = 27 / 22 = 25

Table 5 displays a result in applying PMOESI protocol on a sample program. Initially all states

of an input addresses are Invalid, so when the processor P1 in step1 read address 135, the state

is translated from "I" to "E" because the address is not found in the all levels of caches and as

a result, the cache line that contains address gets by a read miss from main memory. All the

next steps of the program are applied using the protocol in the same way.

Table 5: The Results of a Proposed Protocol using Table 2

Seq.
Core

Name

Core

Job
Data

Cache Line
Job Sharer of Cores

Address State Value

1 P1 reads 135 E 0 R. M.

2 P2 writes 100 135 M 100 W.M.

3 P3 writes 80 135 M 80 W.M.

4 P1 writes 20 35 M 20 W.M.

5 P4 writes 80 228 M 80 W.M.

6 P2 reads 164 E 0 R.M.

7 P3 reads 41 E 0 R.M.

8 P4 writes 30 135 M 30 W.M.

9 P1 reads 135 S 30 R.M.S. P1&P4 in L1

10 P1 writes 11 52 M 11 W.M.

11 P1 reads 228 S 80 R.M.S. P1 in L1+P4 in L2

12 P3 writes 99 100 M 99 W.M.

13 P2 writes 77 193 M 77 W.M.

14 P4 reads 193 S 77 R.M.S. P2&P4 in L1

15 P1 writes 10 41 M 10 W.M.

16 P3 writes 69 164 M 69 W.M.

17 P4 reads 100 S 99 R.M.S. P4 in L1+P3 in L2

18 P1 reads 41 M 10 R.H.

19 P2 reads 193 S 77 R. H. P2 in L1+P4 in L2

20 P1 writes 33 135 M 33 W.H.

21 P3 reads 41 S 10 R.M.S. P1&P3 in L1

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

16 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

22 P3 writes 8 164 M 8 W.H.

23 P4 writes 55 100 M 55 W.H.

24 P1 writes 93 135 M 93 W.H.

25 P4 writes 77 100 M 77 W. H.

26 P2 writes 200 80 M 200 W.M.

27 P3 reads 80 S 200 R.M.S. P2&P3 in L1

28 P2 reads 80 S 200 R.H. P2&P3 in L1

Note: The words of the abbreviation symbols in table 5 are as follows:

R. M. = Read Miss, W. M. = Write Miss, R. H. = Read Hit

Number of hit = 8, Number of miss = 20,

Hit ratio = (number of hit / total number of addresses) * 100 = (8 / 28) * 100 = 29%

Miss ratio =100 - Hit ratio =100 - 28= 71%

Conclusions

From analyzing the results, the hit time is affected by using a different level of caches. The

best case is the existence of the data in the first level and the worst case is the lack of data in

the cache memories and being forced to fetch the data from the main memory causing miss

penalty. The missed penalty has been reduced through organizing the caches to several levels

and also via low-latency cache-to-cache misses. This research presents a new design of a cache

coherence protocol that optimized memory access time.

The table 1 shows in steps 3, 4 and 6 the differences between MOESI and proposal protocol

such that in a PMOESI protocol the write back to main memory does not occur but only need

flush to cache that remotely writes to the same location. While in MOESI protocol the flush of

the block is done to main memory to deliver to cache see table 5.

Table 5: Comparison between MOESI and PMOESI protocol

MOESI Cache Coherence Protocol PMOESI Cache Coherence Protocol

In step3 P2 snoop request bus to invalidate

P1 to change state from M to I and as a

result P1 Flush cache block by transferring

this block to main memory and fetched to

do RWITM

In step3 P2 snoop request bus to

invalidate P1 to change state from M to P

and as a result P1 Flush cache block by

transferring this block to cache2 to do

RWITM

In step4 P1 snoop request bus to invalidate

P2 to change state from M to I and as a

result P2 Flush cache block by transferring

this block to main memory and fetched to

do RWITM

In step4 P1 snoop request bus to

invalidate P2 to change state from M to P

and as a result P2 Flush cache block by

transferring this block to cache2 to do

RWITM

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

17 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

In step6 P2 snoop request bus to invalidate

P1 to change state from M to I and as a

result P1 Flush cache block by transferring

this block to main memory and fetched to

do RWITM

In step6 P2 snoop request bus to

invalidate P1 to change state from M to P

and as a result P1 Flush cache block by

transferring this block to cache2 to do

RWITM

From steps 3, 4 and 6 of table 1, the performance of proposed protocol is increased because the

latency of delay time is reduced in comparison with MOESI protocol. The reason behind this

improvement is in using cache to cache transfer to deliver cache block to be used for Read with

Intent to Modify (RWITM) as a result of a remote write instead of fetching a cache block from

main memory.

Note: the hit ratio in applying proposed protocol table 5 is not differing from hit ratio of

standard MOESI protocol but cache performance is enhanced by reducing latency time

The comparison between tracing in table 4 (using direct mapped caches at all levels) and tracing

when two-way associative caches have been used at all levels in the case of using the same size

of main memory in both:

- Eviction result of a direct mapped cache = 11 line that evicts from L1 to L2 while by using

two-way set associative mapping the number of eviction line = 8.

- LFU+LRU algorithm is used in set-associative cache without using it with a direct mapped

cache

- In using set associative cache, the addresses do not need to evict to L3 cache while by using

direct mapped cache two line evict to L3 cache

The results after tracing in increasing the main memory size and the caches sizes and using a

different degree of associative caches between levels, i.e., at L1 the direct mapped cache is used

and at L2, L3 set associative cache are used are:

- The number of eviction lines from L1 to L2 became 5 and there are no lines evict to L3 and main

memory

- the access time is reduced

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

18 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

Note: the hit ratio in applying proposed protocol table 5 in three cases is not differing but the

hit time between levels is reduced when the degree of associativity and the cache size are

increased.

Future Works

In future work the activities that have been proposed for reducing access to main memory

include: Increasing cache block size to reduce compulsory miss that depends on a chosen cache

sizes, selecting larger size of cache to reduce capacity miss, increasing associativity degree in

order to reduce conflict misses that are limited from 2-way to 16-way for balancing between

lower miss rates and higher costs, Adding new level to reduce miss penalty, and optimizing

cache coherence protocol by modifying in an existence states.

References

1. N. Parvathy, B.R. Upadhyay, T.S.B. Sudarshan, Cache Coherence: A Walkthrough of

Mechanisms and Challenges, In: International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), 2016, India, pp. 2251-2256.

2. C. Vivek, International Journal of Advance Research in Computer Science and Management

Studies (IJARCSMS), 4(7),26-28 (2016).

3. G. Borowik, Z. Chaczko, W. Jacak, T. Łuba, Computational Intelligence and Efficiency in

Engineering Systems, Vol. 595, (Springer, 2015).

4. X. Lian, X. Ning, M. Xie, F. Yu, Cache Coherence Protocols in Shared-Memory Multiprocessors,

In: International Conference on Computational Science and Engineering (ICCSE), (2015), pp.

286-289

5. X. Song, Lecture6: System Integration and Performance", CIS 410 Hardware and Software

Architecture – Department of Information Systems California State University, Los Angeles,

2015.

6. Y. Solihin, Fundamentals of Parallel Multicore Architecture, (CRC Press Taylor & Frabcis Group

A Chapman & Hall Book, Boca Raton, 2015)

7. S. Helmi, A. Nguyen, P. Nguyen, H. Kodali, Cache Coherence Simulation, CSCI 5593-Advanced

Computer architecture, 2015.

Snooping protocol proposal to Improve Cache Performance

 via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

19 Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

 P-ISSN: 2222-8373

 E-ISSN: 2518-9255

8. A. Saparon, F. N. B. Razlan, Cache Coherence Protocols in Multi-Processor, In: International

conference on Computer Science and Information Systems (ICSIS), 17-18 Oct (2014), Dubai

(UAE), pp. 129-134.

9. A.B. Abdallah, Multicore Systems On - Chip: Practical Software / Hardware Design, 2nd ed.

(Atlanties press, Aizuwakamatsu, Japan, 2013).

10. J. L. Hennessy, D. A. Patterson, Computer Architecture A quantitative approach,5th ed. (Morgan

Kaufmann, Elsevier, 2012).

11. D. J. Sorin, M. D. Hill, D. A. Wood, A Primer on Memory Consistency and Cache Coherence,

(Morgan & Claypool Publishers, Wisconsin, 2011).

12. K. Hwang, N. Jotwani, Advanced Computer Architecture parallelism, scalability,

programmability, (McGraw Hill Education, New Delhi, 2011).

13. S. Lametti, Cache Coherence Techniques, M.S.c. Thesis, University of Pisa, Pisa, Italy, (2010).

14. W. Stalling, Computer organization and architecture designing for performance, (Pearson

Education Inc., New Jersey, 2010).

15. S. H. Pugsley, J. B. Spjut, D. W. Nellans, R. Balasubramonian, SWEL: Hardware Cache

Coherence Protocols to Map Shared Data onto Shared Caches, In: 19th international conference

on Parallel architectures and compilation techniques, 11-15 September (2010), Vienna, Austria,

465-476

16. M. M. Mano, Computer System Architecture, 3rd ed. (Pearson Education, New Delhi, 2008).

17. T. Rauber, G. R¨unger, Parallel Programming for Multicore and Cluster Systems, (Springer,

Heidelberg, 2007).

18. K. Strauss, Cache Coherence Embeded - Ring Multiprocessors, PH.D. Dissertation in Computer

Science, University of Illinois at Urbana - Champaign (2007).

19. D. J Sorin, M. Plakal, A. E. Condon, M. D. Hill, M. M. Martin, D.A. Wood, IEEE Transactions

on Parallel and Distributed Systems, 13(6), 556-578(2002).

20. D. Culler, J. P. Singh, A. Gupta, Parallel Computer Architecture: A Hardware / Software

Approach,1st ed. (Morgan Kaufmann Publishers, San Francisco, California, 1997).

