DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Snooping protocol proposal to Improve Cache Performance via Reducing

Memory Access Time

Rehab Flaih Hasan™, Maha Abdulkareem! and Abeer Diaa Al-Nakshabandi?

!Department of Computer Sciences — University of Technology — Baghdad
2Distribution Office at Ministry of Electricity — Baghdad

*surorh@yahoo.com

Received: 2 April 2018 Accepted: 9 May 2019

Abstract

Cache design in multiprocessor systems usually involves maintaining data consistency between
these processors that are achieved through implementation one of most important protocols
used for this purpose which are snooping protocol and directory-based protocol. It also includes
improved memory access time by reducing the time spent in three cases which are: miss rate,
miss penalty and time to hit in the cache. Generally, there exist three critical attributes that have
an impact on the performance of any coherence protocol in the cache which are low-latency
cache-to-cache misses, bandwidths efficiency and scalability challenges. In this research, a new
protocol has been proposed for coherent caches named PMOESI protocol. This protocol has
the same states of a standard MOESI protocol but the difference is in adding a new state named
Premier "P" and also an exclusive reference buffer is designed to be added to Levell cache.
The MOESI protocol is a version of the snooping coherence protocol which each block in the
cache memory can have one of five (Modified, Owned, Exclusive, Shared, Invalid) states. From
using the proposed protocol, the performance is enhanced as a result of reducing latency time
in comparison with MOESI protocol. The reason behind this improvement is in using low
latency cache to cache transfer to deliver the desired block instead of fetching this block from

main memory for responding to request writing of remote processors.

Keywords: Cache coherence problem, Snooping protocol, Directory-Based cache Protocols,

MOESI, Cache Simulation, Dev. C++, Multiprocessor, Shared memory.

Vol: 15 No: 3, July 2019 1 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

mailto:surorh@yahoo.com

DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

3_SIA Jouag B g Jul8T e duidall 5 SIA ;\diwamw JeS s o)
2gaindlll) pluz s 5 1 gl Sl 2 g oua il Gl

i — A) 0 Aaalal — pudall pgle adl
Slazy — eL el 5)l 55 — a5l and?

LAY

s el @l s L il il e Lalial) ey sale 5asaial) cilallaall el b iudal) 513 ayaccs
)5S 55 5 all 5 & MUY J S 55 0 o (il 5 imall 1agd Aaniiusall 0¥ oS 55 jull aaf (san) i VA (ga (3
o il s OB VA 8 Ay (o) gl 8 IS (e 5 SIAN J e sl G g Gt Ll Jady s il e
g L) Wlime ALK i L (5 ginnn 81 (e il S s die efiniiall 5,810 8 cililll GBS S ga g p2e e
Aoyl el (pe 3 3 55 L sae iadiall B_SIAN 8 bl AL 3 gy Al 8 IS pellacall) ABS) G a b
) lseal e i) il S A 05 Rl S s 5 0S50 sl o1 e i L) S 0
oS dae aladin) L (gaa g liLall JAUN Jadl) 5o eS 5 (5 AL (e AadnY) Ay Andall S saa) Jé (e
S 55500 e A5 il 3 SN Gl (sl g s J S 555 0)81 o3 281 cZaadll a8 G Clalladl)
st B Alla ALy alisg (S5 MOES] (bl JsS 53l oVl (udi A1 J S35, 13 PMOESI
S50 Aisia) 8 S (0 WY (5 sinnell i ASiLinl ol & umal) CYIAL jns ya 3 33n pancls s Premier "P”
o ALS (o) LSl) Vs (el (0 (g0 Biie J S 890 ausly @i 555 0 gl sl sl 2 MOESI
e a3) (il 58 55, aladid (e dalla yé GBS jida i pan iSlen dline 4 YL o385 SIA)
MOESI J 58 5 5 1 ae 45l laiul) < Juls 8 4oy 301)

O AL Gl U e Yoy Ay sl ASH el diadal) 813 cpule JEEY) A350l 5 Cpuadl) 138 ol 55)
Bl ciladlaad) e S Ll Alaiad) ie Gyl 5 SIA)

(MOESI «Jdall e 23all JsS 535) g Dain¥) J5S 5 30 il 3 SIAN 3 day) i) ASa sdalidal) cilalsl)
A il s KA 5 saaeiall lalladl (DEV CH+ cainaddl 3 ,SIA 5\Slas

Vol: 15 No: 3, July 2019 2 P-|SSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Introduction

Using of a multicore system, scientific and technical applications achieved better performance
by scaling the core count [1]. Cache memory plays an important role in the design of these
systems. It is used to access data instead of main memory which reduces the latency of delay
time [2]. In such systems, when installing different caches in different processors in shared
memory architecture, the difficulties will appear when there is a need to maintain consistency
between the cache memories of different processors [16]. So, cache coherency protocol is very
important in such kinds of systems; MSI, MESI, MOSI, MOESI, etc. are the most famous
protocols to solve cache coherency problem [6, 8 and 13].

The Cache coherence problem appears when two different processors can have two different
values for the same location. This problem is solved through coherency the caches such that
any reader of the data item will return the most recently written value of that data item. In a
coherent multiprocessor, the cache benefit, from both migration and replication of shared data
[4]. Migration: moving data to a local cache to reduce both data latency to access shared data
item that allocated remotely and the bandwidth demand on the shared memory. Replicating:
copying the shared data that is being read to reduce both the latency of access and contention

for a read shared data item [10].

Coherence Controller

There are two type of controller within multicore processor chip which are cache controller and
memory controller. These controllers are state machines that include logic for implementing
the coherence protocols and are communicated via queues [19]. The cache controller accepts
loads and store from the core and returns load values to the core figure 1a. The controller
initiates a coherence transaction by issuing coherence request to access the required block when
amiss occurs in the cache. This coherence request is sent across interconnection network to one
or more of coherence controller. The memory controller is a coherence controller at the Last
Level Cache (LLC) figure 1b. A memory controller is similar to a cache controller but it differs
that it has only a network side and it does not perform coherence request (loads or stores) or

receive coherence response [7].

Vol: 15 No: 3, July 2019 3 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JJOURNAL FOR PURE

Snooping protocol proposal to Improve Cache Performance

E SCI

via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Loads & l T Loaded

stores Values
Core Side
Cache
————— <«—>»{ Cache
Controller i
Network Side
issued received

coherence coherence

request & requests &

responses responses

Network Side

LLC/Memory

Controller

issued

coherence

responses

Memory

received

coherence

requests

Interconnection network Interconnection network

a- Cache Controller

b- Memory Controller

Figure 1: Cache and Memory Controller [11]

Protocols for Cache Coherence

There are two hardware-based protocols that achieve coherence between caches in

multiprocessor systems which are snooping protocol and directory-based protocol [1 and 3].

The snooping protocol uses a single shared bus to solve the problem of cache coherence via

broadcasting all requests for data to all processors and processors snoop to see if they have a

copy and respond accordingly [9]. A shared bus is a high-speed link that is needed to transfer

data between processors, caches, | / O interfaces, and memories within a multicore processor

system in a coherent fashion figure 2 [5 and 20]. The ability to scale in directory-based schemes

is better than snooping because it does not depend upon a shared bus for communication [4].

The directory which can be central or distributed keeps the state of all memory block shared

between processors and then the cache controller uses point-to-point messages looking up

directory instead of observing shared broadcast to get memory block state [18] figure 3.

Vol: 15 No: 3, July 2019

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

P-1SSN: 2222-8373
E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

bus snoop
£

C HC]]E-HIEIHDI'}'

I Memory fz /O Devices transaction

Figure 2: Snoopy Protocol [20]

Although the directory-based protocols will likely have to be employed for multi core
architectures of the future, there exist a drawback that appears in a directory which are: storage
overhead, frequent indirections, and are more prone to design bugs [15].

| Interconnection Network
l 1 Shared processor are 1, 2,4 and 6

Cache block Dir Entry Presence bits vector
A State

¢ VI

[Te[e] [e] [e]s] l

01 2 3 4 5 6
Symbol S means Memory line is shared
Directory Entry Format
Main Memory Directory

Figure 3: Directory Based Protocols [12 and 20]
Replacing Policies

The direct, fully associative, and set associative are three techniques which can be used in the mapping
process to map the blocks of main memory into cache lines because these lines are fewer than main
memory blocks [16]. In set and fully associative caches there exist various replacement algorithms that
are used because these types of caches have several positions that the block may go, so there are different
probabilities to choose a block that will be replaced [17]. The most used algorithms for replacement are:
first in first out (FIFO) that replace the block that has been in the cache longest, least recently used

Vol: 15 No: 3, July 2019 5 P-|SSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

(LRU) that replace the block that has not referenced in cache for longest time, least frequently used
(LFU) that replace block which has fewest hits and Random in which one block is selected randomly
and replaced [10].

Measuring Cache Performance

The Average Memory Access Time (AMAT) gives us four metrics for cache optimizations: hit

time, hit rate, miss rate, and miss penalty which expressed as in equation (1) [10, 12, 14, 17]:

AMAT = L1 hit time * L1 Hit rate + (L2 Hit time * L2 Hit rate + (L3 Hit time *
L3 Hit rate + Access time of Main Memory = L3 Miss rate) * L2 Miss rate) *
L1 Miss rate 1)

Where

o Hit -- the data requested by the processor appears in the cache.

e Miss -- the data is not found in the cache.

o Hit time — is how long it takes data to be sent from the cache to the processor. This is usually fast,
on the order of 1-5 clock cycles at Levell, of 10-20 clock cycles at Level2, of 30-40 clock cycles at
Level3, of 50-100 clock cycles at the main memory.

e Miss penalty — is the time required to replace a block in the upper level with the corresponding block
from the lower level, plus the time to deliver this block to the processor.

¢ Hit ratio — the percentage of time the data is found in the higher cache.

e Miss ratio — is the percentage of misses and equal (100 - hit ratio).

Implementation Steps of Proposed Premier Modified Own Exclusive Shared
Invalid (PMOESI) Protocol

The following sections illustrate main steps that needed to implement a proposed protocol using
DEV C++ language:

1. Preparation Steps
This protocol has been implemented through the simulation process and some parameters

must be preset to follow up the implementation methods accurately as shown in figure 4.

Vol: 15 No: 3, July 2019 6 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCIENCES

= = e == ===

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

(Start)

Determine the size of a main memory from address 0 up to 4096
that the initialization of the caches at all level depend on them

-

Design new buffer of 512 byte for using in a proposed protocol at L1 cache
named the exclusive reference buffer

v

Initialize 4 direct mapped caches at .1, the size of each one = 64 byte
(8 index, each index have one line from 64 tag, each line have 8 word)

-

Initialize 4 two-way set associative caches at .2, the size of each one = 256 byte
(16 set, each set have two line from 32 tag, each line have 8 word)

-

Initialize one four-way set associative shared cache at L.3 of size 1024 byte
(32 set, each set have four line from 16 tag, each line have 8 word)

Figure 4: Steps Prepared Preset for a Proposed Protocol

2. Binary Representations of Memory Addresses

After defining the preparation parameters, the following functions should be implemented:
a) Binary Conversion Function

All main memory addresses are converted to a binary address.

b) Index, Tag and Offset Conversion Function

The tag, index and offset of address bits should be specified from a binary requested address
depending on a chosen size of the cache and then each one is converted to decimal number via
a binary to decimal conversion function in order to be used in the simulation process.

3. Cache Simulation from Instructions of Randomly Selected Addresses

All addresses of main memory have been simulated to all cache levels figure 5.

Vol: 15 No: 3, July 2019 7 P-|SSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

D

[YALA JOURNAL FOR PURE SCIENCE

)
¥
e === =

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

e

.

Fetch program instruction starting from first continue until end program

-

Decodes incoming instruction

.

convert decimal number of request address to binary number

.

Specify tag, index, and offset of binary number that belong to
request address and then converted them to decimal number

address
found at least in
one cache

Yes ~No
Mapping of existence cache line >

Mapping of new cache line

Update state and data of the cache line
using PMIOESI snooping protocol

.

The Hit and Miss ratio is calculated by using a proposed coherence protocol
for all levels of the caches to each of a request income address

Is
there any more

instruction

No

v

Calculate Final cache performance using Average Memory Access Time (AMAT)

Figure 5: General Structure of Cache Simulation

4. (LFU + LRU) Replacement Algorithm

In this research LFU algorithm is merged within LRU algorithm. This algorithm is used to
select one line from two lines at a set of L2 in the case of incoming other third line evicted from
L1. The victim line is evicted to place at L3cache by using initially LFU algorithm if frequently
of two line are not an equal and select line that least frequently used and if the frequently of

Vol: 15 No: 3, July 2019 8 F’-|SSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JJOURNAL FOR PURE SCIENCES

===

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

two line are equal then LRU algorithm is implemented for choosing least recently line to be

evicted. Also, this algorithm is used to select one line from four lines at a set of L3 in the case

of incoming other fifth line evicted from L2 and then victim line is evicted to put at the main

memory.

5. The Transition States of Proposed PMOESI Cache Coherence Protocol

The transition between states of the proposed PMOESI protocol is shown in figure 6.

Prwr / BusRdx PrRd / -
Prwr /-

1
1
1
1
1
1
BusRdx(E) / Flush to cache
BusUpgr / -

Prwr / BusUpgr

Prwr /-

Prwr / BusUpgr

PrRd / BusRd(S”)

Prwr / BusRdX(E)
If reference = 1

Prwr / BusRAX(NE) ErRd/ BusHdey)

If reference =0

PrRd /-
BusRd / Flush

PrRd / -
BusRd / -

BusRdAX(E) / Flush to cache

BusRd / Flush
PrRd /

PrRd / -

BusRd / FlushOpt

- s e i

- —

Bustx /-
BusUpgr / -
BusRAX(NE)/-
1
1

1
— |

BusRd

BusRdx / -
BusRd(S) / -

s

Figure 6: Buses to Coherent Caches using PMOESI Cache Coherence Protocol

Vol: 15 No: 3, July 2019
DOI: https://dx.doi.org/10.24237/djps.15.03.379C

P-1SSN: 2222-8373

E-ISSN: 2518-9255

OR PURE

DIYALA JOURNAL F

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Experimental Results

The proposal PMOSEI protocol design depends on low latency cache to cache misses in order
to reduce the miss penalty, to approve this enhancement, several experiments have been applied
for different cases of micro-instructions code, with different assumption concerning the main
memory size, cache block size, and different degree of associative. The different results are
obtained from different experiments, the following subsections present the specific assumptions

for each experiment with a step by step tracing followed by performance evaluation.

1. Comparison between MOESI Protocol & PMOESI Protocol

This experiment compares between MOESI and PMOESI cache coherence protocol as shown
in table 1 by using program of six instructions that two processor request address B1 and
supposes that initially, B1 is not cached. The difference between these two protocols has been
shown in blue when MOESI protocol is implemented and shown in red when the proposed

protocol is implemented. The programs of 6 instructions are:

Table 1: MOESI Cache Coherence protocol Action

Seq Event Initially B1=""1""in P1's Cache | Initially B1="1" n P2's Cache
1 P1 writes 10 to B1 B1 = 10 (Modified) B1 = Invalid
(write miss)
P1 reads B1 B1 = 10 (Modified) B1 = invalid
2 (read hit) B1 is flush to main memory

B1 is flush to cache2

P2 writes 90 to B1 B1 =90 (Modified)

(write hit)

B1 = Premier

3 (write miss) B1 = Invalid B1 is flush to main memory
B1 = Premier B1 is flush to cachel
P1 writes 20 to B1 B1 =20 (Modified) B1 = Invalid
4 . . _ ;
(write miss) Bl = Premier
P1 reads B1 B1 =20 (Modified)
5 (read hit) B1 is flush to main memory B1 = Invalid
B1 is flush to cache2 B1 = Premier
6 P2 writes 30 to B1 B1 = Invalid B1 = 30 (Modified)

Vol: 15 No: 3, July 2019
DOI: https://dx.doi.org/10.24237/djps.15.03.379C

10

P-1SSN: 2222-8373
E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

2. Memory Consistency

Two important disciplines are usually implemented that keep the memory consistent which are
a memory consistency model and a cache coherence protocol. Cache coherence is an important,
but incomplete piece of multiprocessor memory consistency. The consistency model is used to
determine the behavior of reads and writes with respect to accesses to other memory locations
while coherence determines the behavior of reads and writes to a single memory location. In
table 2 a sample program has been ordered to complete coherency of 28 instructions using both
direct mapped caches and set associative cache.

Initially, the cache simulation tracing using request addresses of a sample program in table 2
starting from the first address until ending program which shown in table 4 are mapped to direct
mapped caches at all levels after determining the following parameters that are gaining from
binary representation table 3:

Main Memory size = 28byte = 256 byte,

Cache Block size = 2¢ = 23 = 8, where i=3 represents offset bits for all levels,

Cache Size = 2/ (j is (index + offset) bits), j=5at L1,j=6at L2, andj=7 at L3
Cache Size at L1=25% = 32, Cache Size at L2= 2° = 64, Cache Size at L3= 27 = 128,
Number of tag at L1 = 23 = 8 , Number of tag at L2= 4, Number of tag at L3 =2,

Number of cache lines = Cache Size / Cache Block Size = z—i then

5 6
Number of line at L1 = 2—3 = 22 = 4 line , Number of lines at L2 = 2—3 = 23 = 8 line,

7
Number of lines at L3 = 2—3 = 2% =16 line

Vol: 15 No: 3, July 2019 11 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Table 2: Sample Program of 28 instructions

Seq. Core Core Value | Address | Seq. Core Core Value | Address
Name request Name request
1 pl reads 35 15 pl writes 10 41
2 p2 writes 100 135 16 p3 writes 69 164
3 p3 writes 80 135 17 p4 reads 100
4 pl writes 20 35 18 pl reads 41
5 p4 writes 80 228 19 p2 reads 193
6 p2 reads 164 20 pl writes 33 135
7 p3 reads 41 21 p3 reads 41
8 p4 writes 30 135 22 p3 writes 8 164
9 pl reads 135 23 p4 writes 55 100
10 pl writes 11 52 24 pl writes 93 135
11 pl reads 228 25 p4 writes 77 100
12 p3 writes 99 100 26 p2 writes 200 80
13 p2 writes 77 193 27 p3 reads 80
14 p4 reads 193 28 p2 reads 80

Table 3: Binary Representation of Tag, Index and Offset at Three direct mapped Cache Levels

Seq.

Caches at Levell

Caches at Level2

Caches at Level3

Tag

Index

Offset

Tag

Index

Offset

Tag

Index

Offset

0

7

7

O |IN[O|O|D(WIN|F-

©

[y
o

[EEN
[EEN

[y
N

-
w

[y
IS

-
(S}

[y
[op}

[y
~

-
0]

[y
©

N
o

N
s

N
N

N
w

N
S

N
o

WhwWwOo |k, [(~AO|IFRPIWOFRPIOIO|W(N|IFRP|IA A FRPIOIN P IDS

OO0 |IOFR OO |lololr|lololo|lo|MO|O|Rr|O|0O|O(O|O|O

AN RPINPRPRIANDNRIRIRSS|DNN PR WV

RPINEFPINIOINWIOIRINIOIWIWIRLRWIOININIOIN|IW|IOINININ

MO0 [dlO|O|IO|A[(OO|O|ICO|OIAM[M|~|O|O

I N NG NG 'S B PR TSN T IF TSN TSN P S S S BT B TN N NS PO BN BN

ol |olr|olr|r|lolo|r|okr|r|lor|lolo|o|o|kr|k|lo|k|k|k

= = = == =
Rlek|s|ajoleo|uGIs|vo|o |G |leoo|usBa oo

I NG N F N F N N] R PG NG PR Y PG TN F N NG NG P BN TN NG O TPO) S BN

Vol: 15 No: 3, July 2019
DOI: https://dx.doi.org/10.24237/djps.15.03.379C

12

P-1SSN: 2222-8373
E-ISSN: 2518-9255

DIYALA JJOURNAL FOR PURE SCIEN

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

26 2 2 1 2 0 10
27 2 2 0 1 2 0 0 10 0
28 2 2 1 2 0 10
Table 4: Tracing of the Simulation of Direct-Mapped Caches using Table 1
index Levell Cache
P1 p2 P3 P4
5E0 =135 M 100 =135 M 80 8 M80
P&F Invalida Invalida
| P &FI oP P &FI 0P
4-35 M20 B EO = M 99 E M 30
Inv.P3 L1
030
0 = S30 13-193 M 77 16- 164 M 69 = S77
P1&P4 i 19-193 O 77 Invalidate P2inL2 P2&P4 in
P2 in L1+P4in L2 22-164 M 8
28 S80 17-100 S99
P1in Ct+PR4i P4 in L1+P3in L2
23-100 M 55
25-100 M 77
20-135 M 33
24-135 M 93
15-41 M 10 7-41 E O
Invalidate P3 |
1 18-41 M 10 21-41 S 10
O 10 P1&P3in L1
10-52 M 11 26-80 M 200 27-80 S 200
2 O 200 P2&P3in L1
28-80 O 200
Level2 Cache
index P1 p2 P3 P4
esult — 4 Evict result — 6 Evict result — 12 ult — 14
1- 135 2-135 P 3-135 1 8-135 O
|
0 t— Evict result — 17
= 30 14-193 S77
Evict result — 9 Evict result — 13 Evict result — 16 Evict result — 8
4-35 M20 6-164 EO 12-100 M 99 5-228 M 80
4 P S99 O 80
|
Evict result — 20
11-228 S 80
index Level3 shared Cache
V —
0 - 30
4 Evict result — 20
4-35 M 20

Vol: 15 No: 3, July 2019
DOI: https://dx.doi.org/10.24237/djps.15.03.379C

13

P-1SSN: 2222-8373
E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCI

- -...- -J..-

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

The evictions steps that occur through cache simulation of a direct mapping are:

- Instep 4 evict line 128 to 135 from L1 to L2 in reaching line 32 to 39

- Instep 6 evict line 128 to 135 from L1 to L2 in reaching line 160 to 167

- Instep 8 evict line 224 to 231 from L1 to L2 in reaching line 128 to 135

- Instep 9 move line 128 to 135 from L2 to L1 and as a result evict line 32 to 39 from L1 to
L2

- Instep 11 evict line 128 to 135 from L1 to L2 in reaching line 224 to 231

- Instep 12 evict line 128 to 135 from L1 to L2 in reaching line 96 to 103

- Instep 13 evict line 160 to 167 from L1 to L2 in reaching line 192 to 199

- Instep 14 evict line 128 to 135 from L1 to L2 in reaching line 192 to 199

- Instep 16 evict line 96 to 103 from L1 to L2 in reaching line 160 to 167

- Instep 17 evict line 192 to 199 from L1 to L2 in reaching line 96 to 103 and evict line 128
to 135 from L2 to L3.

- Instep 20 move line 128 to 135 from L2 to L1 and remove this line from L2 of P1 and also
remove this line from L3 and then as a result of movement process the line 224 to 231 evict
from L1 to L2 and the line 32 to 39 evict from L2 to L3.

The cache simulation tracing using table 2 that are mapped to two-way set associative caches
at all levels are done in the same manner of table 4 after determining the following parameters:
The main memory size, the block size, and the cache sizes are the same as in table 4 but the
different is in using two lines in each set instead of one line. So, the number of tags is different
as follow:

Number of tag at L1 = 2% = 16, Number oftagat L2 = 8, Number of tag at L3 =4,

Sets at L1 = Lines / number of way = = = 2, Sets at L2- =22 =4, Sets at L3= 24/21 =
23=8

The cache simulation tracing using table 2 that are mapped to direct mapped caches at L1 and
two-way associative caches at L2 and four-way associative caches at L3 are done in the same
manner of table 4 after determining the following parameters using 4096 of main memory
addresses instead of 256 addresses:

Vol: 15 No: 3, July 2019 14 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Cache Block size at all levels = 23 = 8, Cache Size at L1 = 2° = 64,
Number of tag at L1 = 26 = 64, Number of line at L1 = ;—: =23 =8line,
Cache Size at L2 = 28 = 256 , Number of tag at L2 = 25 = 32,
Number of linesat L2 = = = 25 = 32 line, Setsat L2 = 25/21 = 2*
Cache Size at L3 = 21° = 1024 , Number of tag at L3 = 2* = 16,

10

Number of lines at L3 = 22—3 =27 = 128 line, Setsat L3 = 27/2% =25

Table 5 displays a result in applying PMOESI protocol on a sample program. Initially all states
of an input addresses are Invalid, so when the processor P1 in stepl read address 135, the state
is translated from "I" to "E" because the address is not found in the all levels of caches and as
a result, the cache line that contains address gets by a read miss from main memory. All the
next steps of the program are applied using the protocol in the same way.

Table 5: The Results of a Proposed Protocol using Table 2

Core Core Cache Line

Seq. Name Job Data Address | State | Value Job Sharppiof Cores

1 P1 reads 135 E 0 R. M.

2 P2 writes 100 135 M 100 W.M.

3 P3 writes 80 135 M 80 W.M.

4 P1 writes 20 35 M 20 W.M.

5 P4 writes 80 228 M 80 W.M.

6 P2 reads 164 E 0 R.M

7 P3 reads 41 E 0 R.M.

8 P4 writes 30 135 M 30 W.M.

9 P1 reads 135 S 30 R.M.S. P1&P4in L1
10 P1 writes 11 52 M 11 W.M.

11 P1 reads 228 S 80 R.M.S. | PlinL1+P4inL2
12 P3 writes 99 100 M 99 W.M.

13 P2 writes 77 193 M 77 W.M.

14 P4 reads 193 S 77 R.M.S. P2&P4 in L1
15 P1 writes 10 41 M 10 W.M.

16 P3 writes 69 164 M 69 W.M.

17 P4 reads 100 S 99 R.M.S. | P4inL1+P3inL2
18 P1 reads 41 M 10 R.H.

19 P2 reads 193 S 77 R. H. P2 in L1+P4in L2
20 P1 writes 33 135 M 33 W.H.

21 P3 reads 41 S 10 R.M.S. P1&P3in L1

Vol: 15 No: 3, July 2019 15 P-1SSN: 2222-8373

DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

22 P3 writes 8 164 M 8 W.H.
23 P4 writes 55 100 M 55 W.H.
24 P1 writes 93 135 M 93 W.H.
25 P4 writes 77 100 M 77 W. H.
26 P2 writes 200 80 M 200 W.M.
27 P3 reads 80 S 200 | R.M.S. P2&P3in L1
28 P2 reads 80 S 200 R.H. P2&P3in L1

Note: The words of the abbreviation symbols in table 5 are as follows:
R. M. =Read Miss, W. M. = Write Miss, R. H. = Read Hit
Number of hit = 8, Number of miss = 20,
Hit ratio = (number of hit / total number of addresses) * 100 = (8 / 28) * 100 = 29%
Muiss ratio =100 - Hit ratio =100 - 28=71%
Conclusions

From analyzing the results, the hit time is affected by using a different level of caches. The
best case is the existence of the data in the first level and the worst case is the lack of data in
the cache memories and being forced to fetch the data from the main memory causing miss
penalty. The missed penalty has been reduced through organizing the caches to several levels
and also via low-latency cache-to-cache misses. This research presents a new design of a cache
coherence protocol that optimized memory access time.

The table 1 shows in steps 3, 4 and 6 the differences between MOESI and proposal protocol
such that in a PMOESI protocol the write back to main memory does not occur but only need
flush to cache that remotely writes to the same location. While in MOESI protocol the flush of
the block is done to main memory to deliver to cache see table 5.

Table 5: Comparison between MOESI and PMOESI protocol

MOESI Cache Coherence Protocol

PMOESI Cache Coherence Protocol

In step3 P2 snoop request bus to invalidate
P1 to change state from M to | and as a
result P1 Flush cache block by transferring
this block to main memory and fetched to
do RWITM

In step3 P2 snoop request bus to
invalidate P1 to change state from M to P
and as a result P1 Flush cache block by
transferring this block to cache2 to do
RWITM

In step4 P1 snoop request bus to invalidate
P2 to change state from M to | and as a
result P2 Flush cache block by transferring
this block to main memory and fetched to
do RWITM

In step4 P1 snoop request bus to
invalidate P2 to change state from M to P
and as a result P2 Flush cache block by
transferring this block to cache2 to do
RWITM

P-1SSN: 2222-8373

Vol: 15 No: 3, July 2019 16 E-1SSN- 2518.0255

DOI: https://dx.doi.org/10.24237/djps.15.03.379C

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

In step6 P2 snoop request bus to invalidate | In step6 P2 snoop request bus to
P1 to change state from M to | and as a | invalidate P1 to change state from M to P
result P1 Flush cache block by transferring | and as a result P1 Flush cache block by
this block to main memory and fetched to | transferring this block to cache2 to do
do RWITM RWITM

From steps 3, 4 and 6 of table 1, the performance of proposed protocol is increased because the
latency of delay time is reduced in comparison with MOESI protocol. The reason behind this
improvement is in using cache to cache transfer to deliver cache block to be used for Read with

Intent to Modify (RWITM) as a result of a remote write instead of fetching a cache block from

main memory.

Note: the hit ratio in applying proposed protocol table 5 is not differing from hit ratio of

standard MOESI protocol but cache performance is enhanced by reducing latency time

The comparison between tracing in table 4 (using direct mapped caches at all levels) and tracing

when two-way associative caches have been used at all levels in the case of using the same size

of main memory in both:

- Eviction result of a direct mapped cache = 11 line that evicts from L1 to L2 while by using
two-way set associative mapping the number of eviction line = 8.

- LFU+LRU algorithm is used in set-associative cache without using it with a direct mapped
cache

- Inusing set associative cache, the addresses do not need to evict to L3 cache while by using

direct mapped cache two line evict to L3 cache

The results after tracing in increasing the main memory size and the caches sizes and using a
different degree of associative caches between levels, i.e., at L1 the direct mapped cache is used
and at L2, L3 set associative cache are used are:

- The number of eviction lines from L1 to L2 became 5 and there are no lines evict to L3 and main

memory

- the access time is reduced

Vol: 15 No: 3, July 2019 17 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

Note: the hit ratio in applying proposed protocol table 5 in three cases is not differing but the
hit time between levels is reduced when the degree of associativity and the cache size are

increased.

Future Works

In future work the activities that have been proposed for reducing access to main memory
include: Increasing cache block size to reduce compulsory miss that depends on a chosen cache
sizes, selecting larger size of cache to reduce capacity miss, increasing associativity degree in
order to reduce conflict misses that are limited from 2-way to 16-way for balancing between
lower miss rates and higher costs, Adding new level to reduce miss penalty, and optimizing

cache coherence protocol by modifying in an existence states.
References

1. N. Parvathy, B.R. Upadhyay, T.S.B. Sudarshan, Cache Coherence: A Walkthrough of
Mechanisms and Challenges, In: International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEQOT), 2016, India, pp. 2251-2256.

2. C. Vivek, International Journal of Advance Research in Computer Science and Management
Studies (IJARCSMS), 4(7),26-28 (2016).

3. G. Borowik, Z. Chaczko, W. Jacak, T. Luba, Computational Intelligence and Efficiency in
Engineering Systems, Vol. 595, (Springer, 2015).

4, X. Lian, X. Ning, M. Xie, F. Yu, Cache Coherence Protocols in Shared-Memory Multiprocessors,
In: International Conference on Computational Science and Engineering (ICCSE), (2015), pp.
286-289

5. X. Song, Lecture6: System Integration and Performance”, CIS 410 Hardware and Software
Architecture — Department of Information Systems California State University, Los Angeles,
2015.

6. Y. Solihin, Fundamentals of Parallel Multicore Architecture, (CRC Press Taylor & Frabcis Group
A Chapman & Hall Book, Boca Raton, 2015)

7. S. Helmi, A. Nguyen, P. Nguyen, H. Kodali, Cache Coherence Simulation, CSCI 5593-Advanced
Computer architecture, 2015.

Vol: 15 No: 3, July 2019 18 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

DIYALA JOURNAL FOR PURE SCIENCES

Snooping protocol proposal to Improve Cache Performance
via Reducing Memory Access Time

Rehab Flaih Hasan, Maha Abdulkareem and Abeer Diaa Al-Nakshabandi

8. A. Saparon, F. N. B. Razlan, Cache Coherence Protocols in Multi-Processor, In: International
conference on Computer Science and Information Systems (ICSIS), 17-18 Oct (2014), Dubai
(UAE), pp. 129-134.

9. A.B. Abdallah, Multicore Systems On - Chip: Practical Software / Hardware Design, 2™ ed.
(Atlanties press, Aizuwakamatsu, Japan, 2013).

10. J. L. Hennessy, D. A. Patterson, Computer Architecture A quantitative approach,5" ed. (Morgan
Kaufmann, Elsevier, 2012).

11. D. J. Sorin, M. D. Hill, D. A. Wood, A Primer on Memory Consistency and Cache Coherence,
(Morgan & Claypool Publishers, Wisconsin, 2011).

12. K. Hwang, N. Jotwani, Advanced Computer Architecture parallelism, scalability,
programmability, (McGraw Hill Education, New Delhi, 2011).

13. S. Lametti, Cache Coherence Techniques, M.S.c. Thesis, University of Pisa, Pisa, Italy, (2010).

14. W. Stalling, Computer organization and architecture designing for performance, (Pearson
Education Inc., New Jersey, 2010).

15. S. H. Pugsley, J. B. Spjut, D. W. Nellans, R. Balasubramonian, SWEL: Hardware Cache
Coherence Protocols to Map Shared Data onto Shared Caches, In: 19th international conference
on Parallel architectures and compilation techniques, 11-15 September (2010), Vienna, Austria,
465-476

16. M. M. Mano, Computer System Architecture, 3" ed. (Pearson Education, New Delhi, 2008).

17. T. Rauber, G. R'unger, Parallel Programming for Multicore and Cluster Systems, (Springer,
Heidelberg, 2007).

18. K. Strauss, Cache Coherence Embeded - Ring Multiprocessors, PH.D. Dissertation in Computer
Science, University of Illinois at Urbana - Champaign (2007).

19. D. J Sorin, M. Plakal, A. E. Condon, M. D. Hill, M. M. Martin, D.A. Wood, IEEE Transactions
on Parallel and Distributed Systems, 13(6), 556-578(2002).

20. D. Culler, J. P. Singh, A. Gupta, Parallel Computer Architecture: A Hardware / Software
Approach,1* ed. (Morgan Kaufmann Publishers, San Francisco, California, 1997).

Vol: 15 No: 3, July 2019 19 P-ISSN:_ 2222-8373
DOI: https://dx.doi.org/10.24237/djps.15.03.379C E-ISSN: 2518-9255

