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Abstract

Let R be a commutative ring with identity, and let M be a unitary R-module. We

introduce a concept of sm-module as follows: M is called sm-module if and only if V anngN
isasemimaximal ideal of R, for each maximal submodule N of M.

In this paper, some properties and characterizations of sm-modules is given also,
various basic results a bout sm-module are considered. M oreover, some relations between sm-

modules and other types of modules are considered.
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I ntroduction

Every ring considered in this paper will be assumed to be commutative with identity and

every module is unitary. We introduce the following: An R-module M is called an sm-module

if and only if vanngN is a semimaximal ideal of R, for each maximal submodule N of M,
where annRN={r:reR and rN=0} .

Our concern in this paper is to study sm-modules and to look for any relation between
sm-modules and certain types of well-known modules. This paper consists of two sections.
Our main concern in section one is to define and study sm-modules. We introduce some
characterizations for this concept. Also, other basic results about this concept are given. In
section two, we study the relation between sm-modules and max-modules, multiplication
modules, bounded modules and with the other types of modules.

1. Basic Properties of sm-modules

In this section, we introduce the concept of sm-module and give some characterization
and properties of this concept; we end this section by study the relationships between sm-

modules and semisimple rings.

We start with the following definition.
1.1 Definition

An R-module M is called sm-module if and only if vanngN is a semimaximal ideal of
R for each maximal submodule N of M. Specially, aring R is called sm-ring if and only if R
is sm-R-module.

Recall that anideal | of aring R is said to be semimaximal idedl if | is an intersection of
finitely many maximal ideals of R, [1,Def.(1.2.1),p.16].
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1.2 Examples and Remarks

Zs as a Z-module is sm-module. In genera Z, as a Z-module is sm-module, where n is a

positive integer and not prime number.

2. Let p beaprime number. Then the Z-module Z is not sm-module.

3. ZasaZ-moduleis not sm-module. Since pZ is maximal submodule for each p, p is prime

4.

number and /ann, (pZ) = Jo= (0) for each p. Hence (0) is not semimaximal ideal of Z.

Every maximal submodule of an sm-moduleis an sm-module.

Proof: Let K be a maximal submodule of M. Then ,/ann K is semimaximal ideal of R

(since M is sm-module). To show that K is sm-module. Let N be a maximal submodule of K.

Since NcK, then annrKcanngNwhich implies that \/ann K c./anngN, but \/ann K is

semimaximal ideal of R. Thus by [1, Prop.(1.2.11),p.20], \/anngN issemimaximal idea of R

and hence K is an sm-module.

5.

6.
7.

Let M=® Zp asa Z-module. Then M is not sm-module.
p

Q asaZ-moduleis not sm-module.

The homomorphic image of sm-module is not sm-module.

For example:Zs as aZ-module is an sm-module. Definef:Ze—>(% () =n+ (2) foal

. . : . Z .
neZs. It is easily proved that f is homomorphism, but annzé LI Za, Z> is not sm-module

by (2).
Let M=Z®Z, be aZ-module, n isany positive integer is not sm-module.

Recall that an R-module M is said to be max-moduleif /ann;N isamaximal ideal of R,

for each non-zero submodule N of M, [2,Def.(2.1),p.4].

The following proposition shows that the class of sm-modules containing in the class of

max-modul es.
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1.3 Proposition

Every max-module is sm-module.

Proof: Let M be a max-module. Then for each non-zero submodule N of M, /anngN is
maximal ideal of R. Hence by [1, Ex. and Rem.(1.2.2)(2),p.16], /aan;N is semimaximal

ideal of R for each non-zero submodule N of M. Therefore (Jann,N is semimaximal ideal of

R for each maximal submodule N of M and hence M is sm-module.

Note that, the converse of proposition (1.3) is not true in general. For example, the Z-

module M=Z®Z2 is sm-module, but is not max-module. Since Ni=(0)®(2) and

N2=(0)® (5) are maximal submodules of M. Then \/ann,N, =/Zn10Z =+/10Z =10Z is

semimaximal ideal of R and \fann,N, =JZN4Z =/4Z =27 is semimaximal ideadl of R,

which implies M is sm-module. But /ann,N, isnot maximal ideal of R. Thus M is not max-

module.

The class of sm-modulesis closed under direct sum as the following result shows.

1.4 Proposition

Let M1, M2 be two sm-R-modules. Then M1®M: is also sm-R-modules.

Proof: Let N=N1®N> be a maximal submodule of M, where N1, N2 are maximal submodules

of M1 and M2 respectively. Then .JanngN =,/an.(N,@®N,) = /ann,N, namn.N, =

JanngN; nJangN, , but JanngN, and /ann;N, are semimaximal ideals of R (since M1
and M2 are two sm-modules). Thusby [ ,Prop.(1.2.14),p.21], Jann;N is semimaximal ideal

of R and hence M= M1®M3 is sm-module.
So, we have the following application of (1.4).
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1.5 Coroallary

Let My be an sm-R-modulesfor al a. Then @ M isan sm-module.

aEen

The following corollary isaspecial case of proposition (1.4).

1.6 Proposition

Let M be an R-module. If M is sm-module, then M? is also sm-module.

Proof: It isclear that M?>= M@®M. So according to proposition (1.4), M2 is an sm-module.

1.7 Remark

It is not necessary that every direct summand of sm-module is sm-module, for example:

M=Z>PZ20 as a Z-module is sm-modul e, but the Z-module Z2 is not sm-module.

Recall that an R-module M is said to be divisile if and only if rM=M for every non-

elementrinR, [3].

By using this concept, we have the following.

1.8 Proposition

Let M be an R-module, if M is sm-module and every submodule N of M isdivisible, then

JanngN = /ann.rN for each maximal submodule N of M such that IN#(0), reR.

Proof: It isabvious.
The following results are another characterizations of sm-module, but first we need to
recall some definitions.
An R-module M is caled semisimple if every submodule of M is a direct summand of

M. And aring Rissaid to be semisimplering if and only if R isasemismple R-module, [3].
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A ring R isaBoolean ring in case each of its elementsis an idempotent, [4].
Next, we have the following proposition.

1.9 Proposition

Let M be an R-module. Then M is sm-module if and only if R/ /ann N is semisimple
ring for each maximal submodule N of M.

Proof: If M is sm-module, then /anngN is semimaxima idea of R. Thus by

[1,Prop.(1.2.5),p.17],

issemisimple ring.
anngN

Conversdly, if is semisimple ring, then by [1, Prop.(1.2.5),p.17], Jan N is

anngN

semimaximal ideal of R. Thus M is sm-module by def. (1.1).

Now, we deduce the following corollaries.

1.10 Corallary

Every module M over semisimplering R is sm-module.
Proof: The result follows directly from [1, Rem.(1.1.34)(3),p.9] and prop.(1.9).

It is known that if R is a Boolean ring, then every proper ideal of R is semimaximal
ideal, [1,Cor.(1.2.7),p.18].

1.11 Coroallary

Every module M over a Boolean ring is sm-module.
Proof: Itisclear that \/ann,N isa proper ideal of R for each maxima submodule N of M.
Then the result follows from [1,Cor.(1.2.7),p.18] and prop.(1.9).
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2. Modules Related to sm-modules

In this section, we study the relationships between sm-modules and multiplication,
bounded, uniform, projective Z-regular and prime modules.
We note that if M is sm-module, then it is not necessary that R is sm-ring, for example:
The Z-module Z4 is sm-module, but Z is not sm-ring. Moreover if Rissm-ring and M isan R-
module, then M is not necessarily sm-module, for example: Consider the Ze-module Z», Zs is
sm-ring, but Z> is not sm-module.
Recall that an R-module M is called faithful R-module if annrRM=0, [4].
An R-module M is said to be multiplication module if for every submodule N of M, there
existsanideal | of R such that N=IM, [5].
However, in the class of the faithful multiplication module, they are equivalent as the

following result shows.

2.1 Proposition

If M is afaithful multiplication R-module, then M is sm-module if and only if R is sm-
ring.
Proof: If M issm-module. To show that R is sm-module, let | be amaximal ideal of R. Then

IM is maximal submodule of M. Hence N=IM is amaximal submodule of M. Thus ,/anngN

is asemimaximal idea of R because M is sm-module. On the other hand, since M is faithful

multiplication R-module, then annrN= annl, so /an,N =./ann I . Thus Jan.I is a

semimaximal ideal and R isasm-ring.
Conversdly, if Ris sm-ring. To show that M is sm-module, let N be a maximal submodule of
M. Since M is a multiplication R-module, N=IM for some ideal | of R. But M is faithful,

annrN= annrIM= anngl and so \/ann,N = /ann_IM =,/ann.I which is asemimaximal ideal

of R. Therefore M is an sm-module.
Recall that an R-submodule N of M is called essential in M if for each non-zero R-
submodule L of M, NmL=0, [5].

Now, we can give the following result:
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2.2 Proposition

Let M be an R-module and let O0xxeM such that:

1. Rxisanessential submodule of M.

2. \Janng(x) isasemimaximal ideal of R, and

3. JanM = Jann,(x) .

Then M is an sm-module.
Proof: Let N be a maxima submodule of M. Since Rx is an essential submodule of M, there

exists OxteR such that 0 # tx € N and hence (tx) < N. This implies that annrN < annr(tx)

and so .JangN c/an,(tx). But NcM, then ./an.M c.an,N and hence

Janng (x) < \Jann;N by (condition 3). Thus,

Janng (x) < (Jann N < \Jann, (tx) ...(1)
Let re Jann, (tx) , then r"tx=0 for some neZ* and r"teannr(x). But tx=0; that is tgannR(x)

and by (condition 2) ,/ann, (x) issemimaximal ideal of R, sore \/ann, (x) . Thus

Janng (tx) < (Janng (x)  ...(2)
Thus by (1) and (2), Jann,(tx) =./an,(x) and so fann;N =,/ann,(x) . Therefore

(by condition 2) \Jann,N isasemimaximal idea of R and M is an sm-module by def. (1.1).

An R-module M iscalled uniform if every non-zero R-submodule of M is essentia [5].

So, we have that following application of (2.2).

2.3 Coroallary

Let M be a uniform R-module such that ,/ann,(x) is semimaxima ideal of R and

\/annRM = \/annR (x) for some x=0. Then M issm-module.
An R-module M is said to be bounded module if there exists an element xeM such that
annrRM=annr(x) [6].

By using this concept, we have the following.
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2.4 Proposition

If M is a bounded R-module such that ,/ann, (x) isasemimaximal ideal of R for some

0xxeM, then M is an sm-module.

Proof: We have M is bounded, then annrRM=annr(x) for some OzxeM and so

JanngM = Jann. (x) for some O=xeM. Therfore by coro.(2.3), M is sm-module,

The following results are another consegquences of proposition (2.4), but first we need to
recall the definition of projective module.

An R-module M is called projective if for every R-module epimorphism h:A——B and
feHomgr(M,B), there exists ge Homgr(M,A) such that hog=f [3,p.217].

2.5 Corallary

Let R be an integra domain. Then every projective R-module M such that \/ann, (x) is

semimaximal ideal of R for some OxxeM is an sm-module.

Proof: According to [6,Coro.(1.1.12),p.10] and proposition (2.4).

2.6 Corollary

Let M be a cyclic R-module such that ,/ann. (x) is semimaimal ideal of R for some

O=xeM. Then M is sm-module.
Proof: Theresult isdirectly by [6, Coro.(1.1.3),p.7] and proposition (2.4).

Recall that an R-module M is called regular if given any element m in M, there exists
feM* such that m=f(m)m where M*=Homg(M,R), [3].

The Jradical J(N) of a submodule N of an R-module M is defined as the intersection of
all maximal submodules containing N; that is J(N)=~{PcM:Pis maximal and NcP}, [7].

By using these concepts, we have the following.

Vol: 7 No: 1, January 2011 83 | SSN: 1992-0784



DIYALA JOURNAL FOR PURE SCIENCES

On Sm-Modules
Hatam Y hya K halaf

2.7 Proposition

Let M be a regular multiplication R-module and N be a submodule of M. Then the
following statements are equivalent:

1. M isan sm-module.

2. JJanng (J(N)) issemimaximal ideal of R.
3. R/ Janng (J(N)) issemisimplering.
Proof: (1) = (2): Let M be an sm-module. Then ,/ann,N is semimaximal idea of R for

each maximal submodule N of M. Thus by [7,Prop.(2.3),p.4], J(K)=K for every submodule K
of M which implies that J(N)=N for every maximal submodule N of M and hence

Janng (J(N)) issemimaximal idea of R.
(2) = (3) It isabvious according to [ ,Prop.(1.2.5),p.17].
(3) = (1) It follows directly by proposition (1. ).

Next, the following definitions are needed.

An R-module M is said to be a prime module if annrRM=annsN for every non-zero
submodule N of M, [8].

An R-module M is called quasi-maximal module if and only if \/ann.M is semimaximal
ideal of R, [9].

However, in the class of prime module the two concepts sm-module and quasi-maximal

module are equivalent as the following result shows.

2.8 Proposition

Let M be a prime R-module. Then M is sm-module if and only if M is quasi-maximal

module.
Proof: If M is sm-module, then /ann,N is semimaximal ideal of R for each maximal

submodule N of M. Hence annrRM = annrN (since M is prime module). Therefore

Jan M = Jann, N, which implies that \/ann M is semimaximal ideal of R and hence M
IS quasi-maximal module.
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Conversely, let M be aquasi-maxima module. Then \/ann,M is semimaximal ideal of R.

Now, for every non-zero submodule N of M, annrkM = annrN because M is prime module.

Then Jan M =.fann;N for every non-zero submodule N of M, but an M is
semimaximal idea of R, which implies that /ann N is semimaximal ideal of R for every

non-zero submodule N of M and hence \/anng N is semimaximal ideal of R for each maximal

submodule N of M, which completes the proof.
The condition M is prime can not be dropped from proposition (2.8) as the following

examples shows.

2.9 Example

Consider M=Z>®Z3 as a Z-module. M is not prime Z-module.

M is quasi-maximal module. Since \/ann,M = \Jann, (Z, ® Z,) =+/6Z = 6Z is semimaximal

ideal of Z. But M is not sm-module. Since (6) is the only maximal submodule of M and

Jann, (0) =+/Z = Z isnot semimaximal ideal.

The following results are another consequences of proposition (2.8), but first we need to
recall some definitions

An R-module M is said to be searial R-module if the R-submodules of M are linearly
with respect to inclusion, [8].

An R-module M is called Z-regular if for al meM, there exists fe Homr(M,R)=M* such
that f(m)m=m, [6].

An R-module M is called semiprime if and only if annrN is a semiprime ideal of R for
each non-zero R-submodule N of M, [10].

Hence, we have the following consequences of (2.8).
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2.10 Coroallary

Let M be a Z-regular seriad R-module. Then M is sm-module if and only if M is quasi-
maximal module.
Proof: From [10,Prop.(4.2.2),p.71], [10,Prop.(4.2.1),p.70], we get M is prime module and
hence by proposition (2.8) we get the result.

2.11 Corollary

Let M be a uniform semiprime R-module. Then M is quasi-maximal module if and only

R
JanngN

Proof: If M is quasi-maxima module. Then the result follows from [10,Prop.(4.2.3),p.72],

if

is semisimple ring for each maximal submodule N of M.

proposition (2.8) and proposition (1.9).

Conversely, If is semimaximal ring for each maximal submodule N of M. Thus by

anngN
proposition (1.9), we get M is sm-module and hence the result follows according to
[10,Prop.(4.2.3),p.72] and proposition (2.8).
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