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Abstract

Let R be a commutative ring with identity, and let M be a unitary R-module. We

introduce a concept of sm-module as follows: M is called sm-module if and only if Rann N

is a semimaximal ideal of R, for each maximal submodule N of M.

In this paper, some properties and characterizations of sm-modules is given also,

various basic results a bout sm-module are considered. Moreover, some relations between sm-

modules and other types of modules are considered.
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Introduction

Every ring considered in this paper will be assumed to be commutative with identity and

every module is unitary. We introduce the following: An R-module M is called an sm-module

if and only if Rann N
is a semimaximal ideal of R, for each maximal submodule N of M,

where annRN={r:rR and rN=0}.

Our concern in this paper is to study sm-modules and to look for any relation between

sm-modules and certain types of well-known modules. This paper consists of two sections.

Our main concern in section one is to define and study sm-modules. We introduce some

characterizations for this concept. Also, other basic results about this concept are given. In

section two, we study the relation between sm-modules and max-modules, multiplication

modules, bounded modules and with the other types of modules.

1. Basic Properties of sm-modules

In this section, we introduce the concept of sm-module and give some characterization

and properties of this concept; we end this section by study the relationships between sm-

modules and semisimple rings.

We start with the following definition.

1.1 Definition

An R-module M is called sm-module if and only if Rann N
is a semimaximal ideal of

R for each maximal submodule N of M. Specially, a ring R is called sm-ring if and only if R

is sm-R-module.

Recall that an ideal I of a ring R is said to be semimaximal ideal if I is an intersection of

finitely many maximal ideals of R, [1,Def.(1.2.1),p.16].
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1.2 Examples and Remarks

1. Z6 as a Z-module is sm-module. In general Zn as a Z-module is sm-module, where n is a

positive integer and not prime number.

2. Let p be a prime number. Then the Z-module Zp is not sm-module.

3. Z as a Z-module is not sm-module. Since pZ is maximal submodule for each p, p is prime

number and Zann (pZ) 0 (0)  for each p. Hence (0) is not semimaximal ideal of Z.

4. Every maximal submodule of an sm-module is an sm-module.

Proof: Let K be a maximal submodule of M. Then Rann K is semimaximal ideal of R

(since M is sm-module). To show that K is sm-module. Let N be a maximal submodule of K.

Since NK, then annRKannRNwhich implies that Rann K  Rann N , but Rann K is

semimaximal ideal of R. Thus by [1, Prop.(1.2.11),p.20], Rann N is semimaximal ideal of R

and hence K is an sm-module.

5. Let M=
p
Zp as a Z-module. Then M is not sm-module.

6. Q as a Z-module is not sm-module.

7. The homomorphic image of sm-module is not sm-module.

For example:Z6 as a Z-module is an sm-module. Define f:Z6 6Z

(2)
, f(n) = n + (2) fo all

nZ6. It is easily proved that f is homomorphism, but annZ
6Z

(2)
Z2, Z2 is not sm-module

by (2).

8. Let M=ZZn be a Z-module, n is any positive integer is not sm-module.

9. Recall that an R-module M is said to be max-module if Rann N is a maximal ideal of R,

for each non-zero submodule N of M, [2,Def.(2.1),p.4].

The following proposition shows that the class of sm-modules containing in the class of

max-modules.
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1.3 Proposition

Every max-module is sm-module.

Proof: Let M be a max-module. Then for each non-zero submodule N of M, Rann N is

maximal ideal of R. Hence by [1, Ex. and Rem.(1.2.2)(2),p.16], Rann N is semimaximal

ideal of R for each non-zero submodule N of M. Therefore Rann N is semimaximal ideal of

R for each maximal submodule N of M and hence M is sm-module.

Note that, the converse of proposition (1.3) is not true in general. For example, the Z-

module M=Z2Z20 is sm-module, but is not max-module. Since N1= (0) (2) and

N2= (0) (5) are maximal submodules of M. Then Z 1ann N Z 10Z 10Z 10Z    is

semimaximal ideal of R and Z 2ann N Z 4Z 4Z 2Z    is semimaximal ideal of R,

which implies M is sm-module. But R 1ann N is not maximal ideal of R. Thus M is not max-

module.

The class of sm-modules is closed under direct sum as the following result shows.

1.4 Proposition

Let M1, M2 be two sm-R-modules. Then M1M2 is also sm-R-modules.

Proof: Let N=N1N2 be a maximal submodule of M, where N1, N2 are maximal submodules

of M1 and M2 respectively. Then R R 1 2 R 1 R 2ann N ann (N N ) ann N ann N    

R 1 R 2ann N ann N , but R 1ann N and R 2ann N are semimaximal ideals of R (since M1

and M2 are two sm-modules). Thus by [  ,Prop.(1.2.14),p.21], Rann N is semimaximal ideal

of R and hence M= M1M2 is sm-module.

So, we have the following application of (1.4).
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1.5 Corollary

Let M be an sm-R-modules for all . Then

 M is an sm-module.

The following corollary is a special case of proposition (1.4).

1.6 Proposition

Let M be an R-module. If M is sm-module, then M2 is also sm-module.

Proof: It is clear that M2= MM. So according to proposition (1.4), M2 is an sm-module.

1.7 Remark

It is not necessary that every direct summand of sm-module is sm-module, for example:

M=Z2Z20 as a Z-module is sm-module, but the Z-module Z2 is not sm-module.

Recall that an R-module M is said to be divisile if and only if rM=M for every non-

element r in R, [3].

By using this concept, we have the following.

1.8 Proposition

Let M be an R-module, if M is sm-module and every submodule N of M is divisible, then

R Rann N ann rN for each maximal submodule N of M such that rN≠(0), rR.

Proof: It is abvious.

The following results are another characterizations of sm-module, but first we need to

recall some definitions.

An R-module M is called semisimple if every submodule of M is a direct summand of

M. And a ring R is said to be semisimple ring if and only if R is a semisimple R-module, [3].
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A ring R is a Boolean ring in case each of its elements is an idempotent, [4].

Next, we have the following proposition.

1.9 Proposition

Let M be an R-module. Then M is sm-module if and only if R/ Rann N is semisimple

ring for each maximal submodule N of M.

Proof: If M is sm-module, then Rann N is semimaximal ideal of R. Thus by

[1,Prop.(1.2.5),p.17],
R

R

ann N
is semisimple ring.

Conversely, if
R

R

ann N
is semisimple ring, then by [1, Prop.(1.2.5),p.17], Rann N is

semimaximal ideal of R. Thus M is sm-module by def. (1.1).

Now, we deduce the following corollaries.

1.10 Corollary

Every module M over semisimple ring R is sm-module.

Proof: The result follows directly from [1, Rem.(1.1.34)(3),p.9] and prop.(1.9).

It is known that if R is a Boolean ring, then every proper ideal of R is semimaximal

ideal, [1,Cor.(1.2.7),p.18].

1.11 Corollary

Every module M over a Boolean ring is sm-module.

Proof: It is clear that Rann N is a proper ideal of R for each maximal submodule N of M.

Then the result follows from [1,Cor.(1.2.7),p.18] and prop.(1.9).
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2. Modules Related to sm-modules

In this section, we study the relationships between sm-modules and multiplication,

bounded, uniform, projective Z-regular and prime modules.

We note that if M is sm-module, then it is not necessary that R is sm-ring, for example:

The Z-module Z4 is sm-module, but Z is not sm-ring. Moreover if R is sm-ring and M is an R-

module, then M is not necessarily sm-module, for example: Consider the Z6-module Z2, Z6 is

sm-ring, but Z2 is not sm-module.

Recall that an R-module M is called faithful R-module if annRM=0, [4].

An R-module M is said to be multiplication module if for every submodule N of M, there

exists an ideal I of R such that N=IM, [5].

However, in the class of the faithful multiplication module, they are equivalent as the

following result shows.

2.1 Proposition

If M is a faithful multiplication R-module, then M is sm-module if and only if R is sm-

ring.

Proof: If M is sm-module. To show that R is sm-module, let I be a maximal ideal of R. Then

IM is maximal submodule of M. Hence N=IM is a maximal submodule of M. Thus Rann N

is a semimaximal ideal of R because M is sm-module. On the other hand, since M is faithful

multiplication R-module, then annRN= annRI, so R Rann N ann  . Thus Rann  is a

semimaximal ideal and R is a sm-ring.

Conversely, if R is sm-ring. To show that M is sm-module, let N be a maximal submodule of

M. Since M is a multiplication R-module, N=IM for some ideal I of R. But M is faithful,

annRN= annRIM= annRI and so R R Rann N ann M ann    which is a semimaximal ideal

of R. Therefore M is an sm-module.

Recall that an R-submodule N of M is called essential in M if for each non-zero R-

submodule L of M, NL0, [5].

Now, we can give the following result:



On Sm-Modules

Hatam Yhya Khalaf

82Vol: 7 No: 1, January 2011 ISSN: 1992-0784

2.2 Proposition

Let M be an R-module and let 0xM such that:

1. Rx is an essential submodule of M.

2. Rann (x) is a semimaximal ideal of R, and

3. R Rann ann (x)  .

Then M is an sm-module.

Proof: Let N be a maximal submodule of M. Since Rx is an essential submodule of M, there

exists 0tR such that 0  tx  N and hence (tx)  N. This implies that annRN  annR(tx)

and so R Rann ann (tx)  . But NM, then R Rann ann   and hence

R Rann (x) ann  by (condition 3). Thus,

R R Rann (x) ann ann (tx)   …(1)

Let r Rann (tx) , then rntx=0 for some nZ+ and rntannR(x). But tx0; that is tannR(x)

and by (condition 2) Rann (x) is semimaximal ideal of R, so r Rann (x) . Thus

R Rann (tx) ann (x) …(2)

Thus by (1) and (2), R Rann (tx) ann (x) and so R Rann N ann (x) . Therefore

(by condition 2) Rann N is a semimaximal ideal of R and M is an sm-module by def. (1.1).

An R-module M is called uniform if every non-zero R-submodule of M is essential [5].

So, we have that following application of (2.2).

2.3 Corollary

Let M be a uniform R-module such that Rann (x) is semimaximal ideal of R and

R Rann ann (x)  for some x0. Then M is sm-module.

An R-module M is said to be bounded module if there exists an element xM such that

annRM=annR(x) [6].

By using this concept, we have the following.
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2.4 Proposition

If M is a bounded R-module such that Rann (x) is a semimaximal ideal of R for some

0xM, then M is an sm-module.

Proof: We have M is bounded, then annRM=annR(x) for some 0xM and so

R Rann M ann (x) for some 0xM. Therfore by coro.(2.3), M is sm-module.

The following results are another consequences of proposition (2.4), but first we need to

recall the definition of projective module.

An R-module M is called projective if for every R-module epimorphism h:AB and

fHomR(M,B), there exists g HomR(M,A) such that h○g=f [3,p.217].

2.5 Corollary

Let R be an integral domain. Then every projective R-module M such that Rann (x) is

semimaximal ideal of R for some 0xM is an sm-module.

Proof: According to [6,Coro.(1.1.12),p.10] and proposition (2.4).

2.6 Corollary

Let M be a cyclic R-module such that Rann (x) is semimaimal ideal of R for some

0xM. Then M is sm-module.

Proof: The result is directly by [6, Coro.(1.1.3),p.7] and proposition (2.4).

Recall that an R-module M is called regular if given any element m in M, there exists

fM* such that m=f(m)m where M*=HomR(M,R), [3].

The J-radical J(N) of a submodule N of an R-module M is defined as the intersection of

all maximal submodules containing N; that is J(N)={PM:P is maximal and NP}, [7].

By using these concepts, we have the following.
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2.7 Proposition

Let M be a regular multiplication R-module and N be a submodule of M. Then the

following statements are equivalent:

1. M is an sm-module.

2. Rann (J(N)) is semimaximal ideal of R.

3. RR / ann (J(N)) is semisimple ring.

Proof: (1)  (2): Let M be an sm-module. Then Rann N is semimaximal ideal of R for

each maximal submodule N of M. Thus by [7,Prop.(2.3),p.4], J(K)=K for every submodule K

of M which implies that J(N)=N for every maximal submodule N of M and hence

Rann (J(N)) is semimaximal ideal of R.

(2) (3) It is abvious according to [  ,Prop.(1.2.5),p.17].

(3) (1) It follows directly by proposition (1.   ).

Next, the following definitions are needed.

An R-module M is said to be a prime module if annRM=annRN for every non-zero

submodule N of M, [8].

An R-module M is called quasi-maximal module if and only if Rann  is semimaximal

ideal of R, [9].

However, in the class of prime module the two concepts sm-module and quasi-maximal

module are equivalent as the following result shows.

2.8 Proposition

Let M be a prime R-module. Then M is sm-module if and only if M is quasi-maximal

module.

Proof: If M is sm-module, then Rann N is semimaximal ideal of R for each maximal

submodule N of M. Hence annRM = annRN (since M is prime module). Therefore

R Rann M ann N , which implies that Rann  is semimaximal ideal of R and hence M

is quasi-maximal module.
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Conversely, let M be a quasi-maximal module. Then Rann  is semimaximal ideal of R.

Now, for every non-zero submodule N of M, annRM = annRN because M is prime module.

Then R Rann M ann N for every non-zero submodule N of M, but Rann  is

semimaximal ideal of R, which implies that Rann N is semimaximal ideal of R for every

non-zero submodule N of M and hence Rann N is semimaximal ideal of R for each maximal

submodule N of M, which completes the proof.

The condition M is prime can not be dropped from proposition (2.8) as the following

examples shows.

2.9 Example

Consider M=Z2Z3 as a Z-module. M is not prime Z-module.

M is quasi-maximal module. Since Z Z 2 3ann ann (Z Z ) 6Z 6Z     is semimaximal

ideal of Z. But M is not sm-module. Since (0) is the only maximal submodule of M and

Zann (0) Z Z  is not semimaximal ideal.

The following results are another consequences of proposition (2.8), but first we need to

recall some definitions

An R-module M is said to be searial R-module if the R-submodules of M are linearly

with respect to inclusion, [8].

An R-module M is called Z-regular if for all mM, there exists fHomR(M,R)=M* such

that f(m)m=m, [6].

An R-module M is called semiprime if and only if annRN is a semiprime ideal of R for

each non-zero R-submodule N of M, [10].

Hence, we have the following consequences of (2.8).
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2.10 Corollary

Let M be a Z-regular serial R-module. Then M is sm-module if and only if M is quasi-

maximal module.

Proof: From [10,Prop.(4.2.2),p.71], [10,Prop.(4.2.1),p.70], we get M is prime module and

hence by proposition (2.8) we get the result.

2.11 Corollary

Let M be a uniform semiprime R-module. Then M is quasi-maximal module if and only

if
R

R

ann N
is semisimple ring for each maximal submodule N of M.

Proof: If M is quasi-maximal module. Then the result follows from [10,Prop.(4.2.3),p.72],

proposition (2.8) and proposition (1.9).

Conversely, If
R

R

ann N
is semimaximal ring for each maximal submodule N of M. Thus by

proposition (1.9), we get M is sm-module and hence the result follows according to

[10,Prop.(4.2.3),p.72] and proposition (2.8).
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